Tuesday, October 4, 2016

Outoregressiewe Bewegende Gemiddelde Matlab Kode

Dokumentasie is die onvoorwaardelike gemiddelde van die proses, en x03C8 (L) is 'n rasionele, oneindige-graad lag operateur polinoom, (1 x03C8 1 L x03C8 2 L 2 x2026). Let wel: Die konstante eienskap van 'n ARIMA model voorwerp ooreenstem met c. en nie die onvoorwaardelike gemiddelde 956. Deur Wolds ontbinding 1. Vergelyking 5-12 ooreenstem met 'n stilstaande stogastiese proses op voorwaarde dat die koëffisiënte x03C8 Ek is absoluut summable. Dit is die geval wanneer die AR polinoom, x03D5 (L). is stabiel. wat beteken dat al sy wortels lê buite die eenheidsirkel. Daarbenewens het die proses is kousale op voorwaarde dat die MA polinoom is omkeerbaar. wat beteken dat al sy wortels lê buite die eenheidsirkel. Ekonometrie Gereedskap dwing stabiliteit en inverteerbaarheid van ARMA prosesse. Wanneer jy 'n ARMA model spesifiseer met behulp van ARIMA. jy 'n fout as jy koëffisiënte wat nie ooreenstem met 'n stabiele AR polinoom of omkeerbare MA polinoom betree. Net so, skat lê stasionariteit en inverteerbaarheid beperkings tydens beraming. Verwysings 1 Wold, H. 'n studie in die ontleding van tydreekse. Uppsala, Swede: Almqvist amp Wiksell, 1938. Kies jou CountryDocumentation is die onvoorwaardelike gemiddelde van die proses, en x03C8 (L) is 'n rasionele, oneindige-graad lag operateur polinoom, (1 x03C8 1 L x03C8 2 L 2 x2026). Let wel: Die konstante eienskap van 'n ARIMA model voorwerp ooreenstem met c. en nie die onvoorwaardelike gemiddelde 956. Deur Wolds ontbinding 1. Vergelyking 5-12 ooreenstem met 'n stilstaande stogastiese proses op voorwaarde dat die koëffisiënte x03C8 Ek is absoluut summable. Dit is die geval wanneer die AR polinoom, x03D5 (L). is stabiel. wat beteken dat al sy wortels lê buite die eenheidsirkel. Daarbenewens het die proses is kousale op voorwaarde dat die MA polinoom is omkeerbaar. wat beteken dat al sy wortels lê buite die eenheidsirkel. Ekonometrie Gereedskap dwing stabiliteit en inverteerbaarheid van ARMA prosesse. Wanneer jy 'n ARMA model spesifiseer met behulp van ARIMA. jy 'n fout as jy koëffisiënte wat nie ooreenstem met 'n stabiele AR polinoom of omkeerbare MA polinoom betree. Net so, skat lê stasionariteit en inverteerbaarheid beperkings tydens beraming. Verwysings 1 Wold, H. 'n studie in die ontleding van tydreekse. Uppsala, Swede: Almqvist amp Wiksell, 1938. Kies jou CountryAutoregressive bewegende gemiddeldes Simulasie (Eerste Orde) besonderhede die demonstrasie is sodanig dat dieselfde ewekansige reeks punte maak nie saak hoe die konstantes en is uiteenlopend gebruik gestel. Maar wanneer die quotrandomizequot knoppie gedruk word, 'n nuwe ewekansige reeks sal gegenereer word en gebruik word. Hou die ewekansige reeks identiese die gebruiker toelaat om presies die uitwerking daarvan op die ARMA reeks van veranderinge in die twee konstantes sien. Die konstante is beperk tot (-1,1) omdat divergensie van die ARMA reeks resultate wanneer. Die demonstrasie is net vir 'n eerste-orde-proses. Bykomende AR terme in staat sal stel meer komplekse reeks word gegenereer, terwyl bykomende MA terme die smoothing sal verhoog. Vir 'n gedetailleerde beskrywing van ARMA prosesse, sien, byvoorbeeld, G. Box, G. M. Jenkins, en G. Reinsel, Tydreeksanalise: Vooruitskatting en beheer. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1994. VERWANTE LINKSAutoregressive Moving gemiddelde Fout prosesse outoregressiewe bewegende gemiddelde fout prosesse (ARMA foute) en ander modelle wat die volgende behels lags van die dwaling terme kan geskat word deur die gebruik van FIT state en gesimuleerde of voorspel deur gebruik te maak van LOS state. ARMA modelle vir die fout proses word dikwels gebruik vir modelle met autocorrelated residue. Die AR makro kan gebruik word om modelle met outoregressiewe fout prosesse spesifiseer. Die MA makro kan gebruik word om modelle spesifiseer met bewegende gemiddelde fout prosesse. Outoregressiewe Foute 'n model met die eerste-orde outoregressiewe foute, AR (1), het die vorm terwyl 'n AR (2) fout proses het die vorm en dies meer vir hoër-orde prosesse. Let daarop dat die e onafhanklik en identies verdeelde en het 'n verwagte waarde van 0. 'n Voorbeeld van 'n model met 'n AR (2) komponent is en dies meer vir hoër-orde prosesse. Byvoorbeeld, kan jy 'n eenvoudige lineêre regressiemodel met MA (2) skryf bewegende gemiddelde foute as waar Ma1 en Ma2 is die bewegende gemiddelde parameters. Let daarop dat RESID. Y outomaties word gedefinieer deur PROC model as die ZLAG funksie moet gebruik word vir MA modelle om die rekursie van die lags afgestomp. Dit verseker dat die vertraagde foute begin by nul in die lag priming fase en nie voort ontbrekende waardes wanneer-lag priming tydperk veranderlikes ontbreek, en dit verseker dat die toekomstige foute is nul eerder as vermis tydens simulasie of vooruitskatting. Vir meer besonderhede oor die lag funksies, sien die artikel Lag logika. Hierdie model geskryf met behulp van die MA makro is soos volg: Algemene vorm vir ARMA Models Die algemene ARMA (p, q) proses het die volgende vorm 'n ARMA (p, q) model kan gespesifiseer word soos volg: waar AR Ek en MA j verteenwoordig die outoregressiewe en bewegende gemiddelde parameters vir die verskillende lags. Jy kan enige name wat jy wil vir hierdie veranderlikes gebruik, en daar is baie soortgelyk maniere wat die spesifikasie kan geskryf word. Vektor ARMA prosesse kan ook beraam met PROC model. Konvergensie Probleme met ARMA Models ARMA modelle kan moeilik om te skat wees: Byvoorbeeld, kan 'n twee-veranderlike AR (1) proses vir die foute van die twee endogene veranderlikes Y1 en Y2 soos volg gespesifiseer word. As die parameter ramings is nie binne die toepaslike omvang, 'n bewegende gemiddelde modelle oorblywende terme groei eksponensieel. Die berekende residue vir latere waarnemings kan baie groot wees of kan oorloop. Dit kan gebeur óf omdat onbehoorlike beginspan waardes is gebruik of omdat die iterasies wegbeweeg van redelike waardes. Sorg moet gedra word in die keuse van beginspan waardes vir ARMA parameters. Begin waardes van 0.001 vir ARMA parameters gewoonlik werk as die model pas die data goed en die probleem is goed gekondisioneer. Let daarop dat 'n MA-model dikwels benader kan word deur 'n hoë-orde AR model, en omgekeerd. Dit kan lei tot 'n hoë collinearity in gemengde ARMA modelle, wat op sy beurt ernstige swak kondisionering in die berekeninge en onstabiliteit van die parameter ramings kan veroorsaak. As jy konvergensie probleme te hê, terwyl die skatte van 'n model met ARMA foute prosesse, probeer om te skat in stappe. In die eerste plek gebruik 'n geskikte verklaring aan net die strukturele parameters met die ARMA parameters gehou na nul (of om vooraf redelike raming indien beskikbaar) te skat. Volgende, gebruik 'n ander FIT verklaring slegs die ARMA parameters beraam, met behulp van die strukturele parameterwaardes van die eerste termyn. Sedert die waardes van die strukturele parameters is waarskynlik naby aan hul finale skattings te wees, kan die ARMA parameterberaming nou bymekaar. Ten slotte, gebruik 'n ander FIT verklaring aan gelyktydige skattings van al die parameters te produseer. Sedert die aanvanklike waardes van die parameters is nou waarskynlik baie naby aan hul finale gesamentlike skattings te wees, moet die skattings vinnig bymekaar as die model geskik is vir die data is. AR beginvoorwaardes Die aanvanklike lags van die fout terme van AR (p) modelle gemodelleer kan word in verskillende maniere. Die outoregressiewe fout begin metodes deur SAS / ETS prosedures is die volgende: voorwaardelike kleinste kwadrate (ARIMA en model prosedures) onvoorwaardelike kleinste kwadrate (AUTOREG, ARIMA, en model prosedures) die maksimum waarskynlikheid (AUTOREG, ARIMA, en model prosedures) Yule-Walker (AUTOREG prosedure net) Hildreth-Lu, wat (enigste model prosedure) die eerste p Waarnemings verwyder Sien Hoofstuk 8, die AUTOREG prosedure, vir 'n verduideliking en bespreking van die meriete van verskeie AR (p) begin metodes. Die CLS, ULS, ML, en HT initializations uitgevoer kan word deur PROC model. Vir AR (1) foute, kan hierdie initializations geproduseer, soos uiteengesit in Tabel 18.2. Hierdie metodes is ekwivalent in groot monsters. Table 18.2 Initializations Uitgevoer deur PROC Model: AR (1) FOUTE Die aanvanklike lags van die fout terme van MA (Q) modelle kan ook geskoei op verskillende maniere. Die volgende bewegende gemiddelde fout start-up paradigmas word ondersteun deur die ARIMA en model prosedures: onvoorwaardelike kleinstekwadrate voorwaardelike kleinstekwadrate die voorwaardelike kleinste kwadrate metode van beraming bewegende gemiddelde fout terme is nie optimaal omdat dit die aanloop probleem ignoreer. Dit verminder die doeltreffendheid van die skat, hoewel hulle onbevooroordeelde bly. Die aanvanklike uitgestel residue, die uitbreiding van voor die aanvang van die data, is veronderstel om 0, hul onvoorwaardelike verwagte waarde. Dit stel 'n verskil tussen hierdie residue en die algemene kleinstekwadrate residue vir die bewegende gemiddelde kovariansie, wat, in teenstelling met die outoregressiewe model, voortduur deur die datastel. Gewoonlik hierdie verskil konvergeer vinnig tot 0, maar vir byna noninvertible bewegende gemiddelde prosesse die konvergensie is baie stadig. Om hierdie probleem te verminder, moet jy baie data het, en die bewegende gemiddelde parameterberaming moet goed binne die omkeerbare reeks. Hierdie probleem reggestel kan word ten koste van die skryf van 'n meer komplekse program. Onvoorwaardelike kleinste kwadrate beramings vir die MA (1) proses kan geproduseer word deur die spesifiseer van die model soos volg: Moving-gemiddelde foute kan moeilik om te skat wees. Jy moet oorweeg om 'n AR (p) benadering tot die bewegende gemiddelde proses. 'N bewegende gemiddelde proses kan gewoonlik goed benader word deur 'n outoregressiewe proses as die data is nie stryk of differenced. Die AR Makro Die SAS makro AR genereer programmering state vir PROC model vir outoregressiemodelle. Die AR makro is deel van SAS / ETS sagteware, en geen spesiale opsies moet ingestel word om die makro gebruik. Die outoregressiewe proses toegepas kan word om die strukturele vergelyking foute of om die endogene reeks hulself. Die AR makro kan gebruik word vir die volgende tipes motor regressie: onbeperkte vector-motor regressie beperk vector-motor regressie Eenveranderlike motor regressie Om die foutterm van 'n vergelyking model as 'n outoregressiewe proses, gebruik die volgende stelling na die vergelyking: Byvoorbeeld, veronderstel dat Y is 'n lineêre funksie van x1, x2, en 'n AR (2) fout. Die oproepe na AR moet kom na al die vergelykings wat die proses van toepassing op: Jy sal hierdie model soos volg skryf. Die voorafgaande makro aanroeping, AR (y, 2), produseer die state getoon in die lys uitset in Figuur 18.58. Figuur 18.58 LYS Opsie Uitset vir 'n AR (2) Model Die pred voorafgegaan veranderlikes is tydelik program veranderlikes gebruik sodat die lags van die residue is die korrekte residue en nie dié geherdefinieer deur hierdie vergelyking. Let daarop dat hierdie is gelykstaande aan die state uitdruklik in die artikel Algemene Form vir ARMA Models geskryf. Jy kan ook die outoregressiewe parameters aan nul beperk by uitgesoekte lags. Byvoorbeeld, as jy outoregressiewe parameters wou by lags 1, 12, en 13, kan jy die volgende stellings gebruik: Hierdie state genereer die uitset in Figuur 18,59. Figuur 18,59 LYS Opsie Uitset vir 'n AR Model met lags op 1, 12, en 13 Die model Prosedure aanbieding van Saamgestel programkode Verklaring Geperste PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y pred. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - PREDy) yl12 ZLAG12 (y - PREDy) yl13 ZLAG13 (y - PREDy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Daar is variasies op die voorwaardelike kleinste kwadrate metode, afhangende van of waarnemings op die begin van die reeks word gebruik om op te warm die AR proses. By verstek, die AR voorwaardelike kleinste kwadrate metode gebruik al die waarnemings en aanvaar nulle vir die aanvanklike lags van outoregressiewe terme. Deur die gebruik van die opsie man, kan jy versoek dat AR gebruik die onvoorwaardelike kleinste kwadrate (ULS) of metode maksimum-waarskynlikheid (ML) plaas. Byvoorbeeld, is Besprekings van hierdie metodes wat in die artikel AR beginvoorwaardes. Deur die gebruik van die MCLS N opsie, kan jy versoek dat die eerste N Waarnemings word om skattings van die aanvanklike outoregressiewe lags bereken. In hierdie geval, die ontleding begin met waarneming N 1. Byvoorbeeld: Jy kan die AR makro gebruik om 'n outoregressiewe model toe te pas om die endogene veranderlike, in plaas van om die foutterm, deur gebruik te maak van die opsie TYPEV. Byvoorbeeld, as jy wil die vyf afgelope lags van Y toe te voeg tot die vergelyking in die vorige voorbeeld, jy kan AR gebruik om die parameters te genereer en loop deur die gebruik van die volgende stellings: Die voorafgaande stellings te genereer die uitset in Figuur 18.60. Figuur 18.60 LYS Opsie Uitset vir 'n AR model van Y Hierdie model voorspel Y as 'n lineêre kombinasie van X1, X2, 'n onderskep, en die waardes van Y in die mees onlangse vyf periodes. Onbeperkte vector-motor regressie Om die fout terme van 'n stel vergelykings as 'n vektor outoregressiewe proses te modelleer, gebruik die volgende vorm van die AR makro na die vergelykings: Die processname waarde is 'n naam wat jy verskaf vir AR om te gebruik in die maak van name vir die outoregressiewe grense. Jy kan die AR makro gebruik om verskillende AR prosesse vir verskillende stelle vergelykings model deur gebruik te maak van verskillende proses name vir elke stel. Die naam proses verseker dat die veranderlike name wat uniek is. Gebruik 'n kort processname waarde vir die proses as parameter ramings geskryf moet word om 'n uitset datastel. Die AR makro probeer parameter name minder as of gelyk aan agt karakters bou, maar dit is beperk deur die lengte van processname. wat gebruik word as 'n voorvoegsel vir die AR parameter name. Die variablelist waarde is die lys van endogene veranderlikes vir die vergelykings. Byvoorbeeld, veronderstel dat foute vir vergelykings Y1, Y2, en Y3 gegenereer deur 'n tweede-orde vektor outoregressiewe proses. wat die volgende vir Y1 en soortgelyke kode vir Y2 en Y3 genereer: Slegs die voorwaardelike kleinste kwadrate (MCLS of MCLS n) metode kan gebruik word vir vektor prosesse Jy kan die volgende stellings gebruik. Jy kan ook dieselfde vorm met beperkings wat die koëffisiëntmatriks 0 by uitgesoekte lags gebruik. Byvoorbeeld, die volgende stellings pas 'n derde-orde vektor proses om die vergelyking foute met al die koëffisiënte op lag 2 beperk tot 0 en met die koëffisiënte op lags 1 en 3 onbeperkte: Jy kan die drie reekse Y1Y3 as 'n vektor outoregressiewe proses te modelleer in die veranderlikes in plaas van in die foute deur die gebruik van die opsie TYPEV. As jy wil Y1Y3 model as 'n funksie van die verlede waardes van Y1Y3 en 'n paar eksogene veranderlikes of konstantes, kan jy AR gebruik om die state vir die lag terme te genereer. Skryf 'n vergelyking vir elke veranderlike vir die nonautoregressive deel van die model, en dan bel AR met die opsie TYPEV. Byvoorbeeld, kan die nonautoregressive deel van die model 'n funksie van eksogene veranderlikes wees, of dit kan onderskep parameters wees. As daar geen eksterne komponente om die vector-motor regressie model, insluitende geen afsnitte, dan wys nul tot elk van die veranderlikes. Daar moet 'n opdrag aan elkeen van die veranderlikes voor AR genoem. Hierdie voorbeeld modelle die vektor Y (Y1 Y2 Y3) as 'n lineêre funksie net van sy waarde in die vorige twee periodes en 'n wit geraas fout vektor. Die model het 18 (3 3 3 3) parameters. Sintaksis van die AR Makro Daar is twee gevalle van die sintaksis van die AR makro. Wanneer beperkings op 'n vektor AR proses nie nodig, die sintaksis van die AR makro het die algemene vorm spesifiseer 'n voorvoegsel vir AR om te gebruik in die bou van name van veranderlikes wat nodig is om die AR proses te definieer. As die endolist nie gespesifiseer word nie, die endogene lys standaard te noem. wat moet die naam van die vergelyking waarna die AR fout proses toegepas moet word nie. Die naam mag nie meer as 32 karakters. is aan die orde van die AR proses. spesifiseer die lys van vergelykings waarna die AR proses toegepas moet word. Indien meer as een naam word gegee, is 'n onbeperkte vektor proses geskep met die strukturele residue van al die vergelykings ingesluit as voorspellers in elk van die vergelykings. As nie gespesifiseer, verstek na endolist naam. spesifiseer die lys van sloerings waarteen die AR terme is om by te voeg. Die koëffisiënte van die terme op lags nie gelys is ingestel op 0. Al die genoteerde lags moet minder as of gelyk aan nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, die laglist standaard vir alle lags 1 deur nlag. spesifiseer die skatting metode om te implementeer. Geldige waardes van M is CLS (voorwaardelike kleinste kwadrate beramings), ULS (onvoorwaardelike kleinste kwadrate beramings), en ML (maksimum waarskynlikheid ramings). MCLS is die standaard. Slegs MCLS toegelaat wanneer meer as een vergelyking gespesifiseer. Die ULS en ML metodes word nie ondersteun nie vir vektor AR modelle deur AR. bepaal dat die AR proses toegepas moet word om die endogene veranderlikes hulself in plaas van om die strukturele residue van die vergelykings. Beperkte vector-motor regressie Jy kan beheer wat parameters ingesluit in die proses, die beperking van tot 0 diegene parameters wat jy nie in te sluit. In die eerste plek gebruik AR met die opsie eerbiedig die veranderlike lys verklaar en die dimensie van die proses te definieer. Dan gebruik addisionele AR oproepe na terme vir geselekteerde vergelykings met geselekteerde veranderlikes by sekere lags genereer. Byvoorbeeld, die fout vergelykings geproduseer is soos volg: Hierdie model stel dat die foute vir Y1 afhang van die foute van beide Y1 en Y2 (maar nie Y3) by beide lags 1 en 2, en dat die foute vir Y2 en Y3 afhang die vorige foute vir al drie veranderlikes, maar slegs op lag 1. AR Makro Sintaksis vir Beperkte vector AR 'n alternatiewe gebruik van AR toegelaat word om beperkings op 'n vektor AR proses te lê deur AR 'n paar keer 'n beroep op verskillende AR terme spesifiseer en loop vir verskillende vergelykings. Die eerste oproep het die algemene vorm spesifiseer 'n voorvoegsel vir AR om te gebruik in die bou van name van veranderlikes wat nodig is om die vektor AR proses te definieer. spesifiseer die einde van die AR proses. spesifiseer die lys van vergelykings waarna die AR proses toegepas moet word. bepaal dat AR is nie om die AR proses te genereer, maar is om te wag vir verdere inligting wat in later AR oproepe vir die gelyknamige waarde. Die daaropvolgende oproepe het die algemene vorm is dieselfde as in die eerste oproep. spesifiseer die lys van vergelykings waarna die spesifikasies in hierdie AR oproep is wat toegepas moet word. Slegs name wat in die endolist waarde van die eerste oproep vir die naam waarde kan verskyn in die lys van vergelykings in eqlist. spesifiseer die lys van vergelykings wie uitgestel strukturele residue is om ingesluit te word as voorspellers in die vergelykings in eqlist. Slegs name in die endolist van die eerste oproep vir die naam waarde kan verskyn in varlist. As nie gespesifiseer, verstek na varlist endolist. spesifiseer die lys van sloerings waarteen die AR terme is om by te voeg. Die koëffisiënte van die terme op lags nie gelys is ingestel op 0. Al die genoteerde lags moet minder as of gelyk aan die waarde van nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, verstek laglist al lags 1 deur nlag. Die MA Makro Die SAS makro MA genereer programmering state vir PROC model vir die verskuiwing-gemiddelde modelle. Die MA makro is deel van SAS / ETS sagteware, en geen spesiale opsies is nodig om die makro gebruik. Die bewegende gemiddelde fout proses toegepas kan word om die strukturele vergelyking foute. Die sintaksis van die MA makro is dieselfde as die AR makro behalwe daar is geen argument plekke. Wanneer jy die MA en AR makros gekombineer, moet die MA makro die AR makro volg. Die volgende SAS / IML state te produseer 'n ARMA (1, (1 3)) fout proses en stoor dit in die datastel MADAT2. Die volgende PROC MODEL state word gebruik om die parameters van hierdie model skat met behulp van maksimum waarskynlikheid fout struktuur: die skat van die parameters wat deur hierdie lopie word in Figuur 18.61. Figuur 18.61 Beramings van 'n ARMA (1, (1 3)) Proses Daar is twee gevalle van die sintaksis vir die MA makro. Wanneer beperkings op 'n vektor MA proses nie nodig, die sintaksis van die MA makro het die algemene vorm spesifiseer 'n voorvoegsel vir MA om te gebruik in die bou van name van veranderlikes wat nodig is om die MA proses te definieer en is die standaard endolist. is aan die orde van die MA-proses. spesifiseer die vergelykings waarna die MA proses toegepas moet word. Indien meer as een naam word gegee, is CLS skatting gebruik vir die vektor proses. spesifiseer die lags waarteen die MA terme is om by te voeg. Al die genoteerde lags moet minder as of gelyk aan nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, die laglist standaard vir alle lags 1 deur nlag. spesifiseer die skatting metode om te implementeer. Geldige waardes van M is CLS (voorwaardelike kleinste kwadrate beramings), ULS (onvoorwaardelike kleinste kwadrate beramings), en ML (maksimum waarskynlikheid ramings). MCLS is die standaard. Slegs MCLS toegelaat wanneer meer as een vergelyking wat in die endolist. MA Makro Sintaksis vir Beperkte Vector bewegende gemiddeldes 'n Alternatiewe gebruik van MA toegelaat word om beperkings op 'n vektor MA proses te lê deur 'n paar keer 'n beroep MA verskillende MA terme spesifiseer en loop vir verskillende vergelykings. Die eerste oproep het die algemene vorm spesifiseer 'n voorvoegsel vir MA om te gebruik in die bou van name van veranderlikes wat nodig is om die vektor MA proses te definieer. spesifiseer die einde van die MA-proses. spesifiseer die lys van vergelykings waarna die MA proses toegepas moet word. bepaal dat MA is nie tot die MA proses te genereer, maar is om te wag vir verdere inligting wat in later MA oproepe vir die gelyknamige waarde. Die daaropvolgende oproepe het die algemene vorm is dieselfde as in die eerste oproep. spesifiseer die lys van vergelykings waarna die spesifikasies in hierdie MA oproep is wat toegepas moet word. spesifiseer die lys van vergelykings wie uitgestel strukturele residue is om ingesluit te word as voorspellers in die vergelykings in eqlist. spesifiseer die lys van sloerings waarteen die MA terme te wees added. Documentation ARIMA klas beskrywing ARIMA skep model voorwerpe vir stilstaande of eenheid wortel stationaire lineêre tydreeksmodel. Dit sluit bewegende gemiddelde (MA), outoregressiewe (AR), gemengde outoregressiewe en bewegende gemiddelde (ARMA), geïntegreerde (ARIMA), multiplikatiewe seisoenale en lineêre tydreeksmodelle dat 'n regressie komponent (ARIMAX) insluit. Spesifiseer modelle met bekende koëffisiënte, skat koëffisiënte met data met behulp van skatting. of na te boots modelle met boots. By verstek, die variansie van die innovasies is 'n positiewe skalaar, maar jy kan enige ondersteun voorwaardelike variansie model, spesifiseer soos 'n GARCH model. Konstruksie Mdl ARIMA skep 'n ARIMA model grade nul. MDL ARIMA (p, D, q) skep 'n nonseasonal lineêre tydreeksmodel behulp outoregressiewe graad p. breukmetodes graad D. en bewegende gemiddelde graad q. MDL ARIMA (Naam, Waarde) skep 'n lineêre tydreeksmodel die gebruik van addisionele opsies wat deur een of meer naam, Waarde paar argumente. Naam is die naam eiendom en waarde is die ooreenstemmende waarde. Naam moet binne aanhalingstekens (). Jy kan 'n paar naam-waarde paar argumente spesifiseer in enige volgorde as NAME1, VALUE1. Namen, ValueN. Insette Argumente Let wel: Jy kan net hierdie argumente gebruik vir nonseasonal modelle. Vir seisoenale modelle, gebruik die naam-waarde sintaksis. Definisies Lag Operateur Die lag operateur L word gedefinieer as L i y t y t x2212 i. Jy kan lag operateur polinome te skep met behulp van hulle om die notasie kondenseer en los lineêre verskilvergelykings. Die lag operateur polinome in die lineêre tydreeksmodel definisies is: x03D5 (L) 1 x2212 x03D5 L x2212 x03D5 2 L 2 x2212. x2212 x03D5 p L p. wat is die graad p outoregressiewe polinoom. x03B8 (L) 1 x03B8 L x03B8 2 L 2. x03B8 Q L q. wat is die graad Q bewegende gemiddelde polinoom. x03A6 (L) 1 x2212 x03A6 p 1 L p 1 x2212 x03A6 p 2 L p 2 x2212. x2212 x03A6 p s L p s. wat is die graad p s seisoenale outoregressiewe polinoom. x0398 (L) 1 x0398 Q 1 L Q 1 x0398 Q 2 L V 2. x0398 q s L q s. wat is die graad Q se seisoenale bewegende gemiddelde polinoom. Let wel: Die grade van die lag operateurs in die seisoenale polinome 934 (L) en 920 (L) nie voldoen aan diegene gedefinieer deur Box en Jenkins 1. Met ander woorde, Ekonometrie Toolboxx2122 nie behandel p 1 s. p 2 2s. p s c p s of Q 1 s. Q 2 2s. q s c q is waar C p en c Q is positiewe heelgetalle. Die sagteware is buigsaam as dit kan jy die lag operateur grade spesifiseer. Sien Multiplikatiewe ARIMA Model Spesifikasies. Lineêre tydreeksmodel 'n Lineêre tydreeksmodel vir reaksie proses yt en innovasies 949 t is 'n stogastiese proses wat die vorm YTC x03D5 1 yt x2212 1 x2026 x03D5 pyt x2212 p x03B5 t x03B8 1 x03B5 t x2212 1 x2026 x03B8 Q x03B5 t x2212 het q. In lag operateur notasie, hierdie model is x03D5 (L) y t c x03B8 (L) x03B5 t. Die algemene tye reeks model, wat breukmetodes, multiplikatiewe seisoenaliteit, en seisoenale breukmetodes sluit, is x03D5 (L) (1 x2212 L) D x03A6 (L) (1 x2212 L s) D sytc x03B8 (L) x0398 (L) x03B5 t . Die koëffisiënte van die nonseasonal en seisoenale outoregressiewe polinome x03D5 (L) en x03A6 (L) stem ooreen met AR en Kong. onderskeidelik. Die grade van hierdie polinome is p en p s. Net so, die koëffisiënte van polinome x03B8 (L) en x0398 (L) stem ooreen met MA en SMA. Die grade van hierdie polinome is Q en Q is. onderskeidelik. Die polinome (1 x2212 L) D en (1 x2212 L s) D e het 'n mate van nonseasonal en seisoenale integrasie D en D s. onderskeidelik. Let daarop dat is, stem ooreen met eiendom Seisoenaliteit model. D s is 1 as Seisoenaliteit is nul, en dit is 0 anders. Dit wil sê, die sagteware van toepassing eerste-orde seisoenale breukmetodes as Seisoenaliteit 8805 1. Die model eiendom Q gelyk aan q q s is. Jy kan hierdie model uit te brei deur die insluiting van 'n matriks van voorspeller data. Vir meer besonderhede, sien ARIMA model insluitende Eksogene covariates. Stasionariteit Vereistes x03D5 (L) y t c x03B8 (L) x03B5 t. waar 949 t het beteken 0, variansie 963 2. en C o v (x03B5 t. x03B5 s) 0 vir t 8800 s. stilstaan ​​as sy verwagte waarde, variansie en kovariansie tussen elemente van die reeks is onafhanklik van tyd. Byvoorbeeld, die MA (Q) model, met c 0. stilstaan ​​vir 'n Q x003C x221E omdat E (yt) x03B8 (L) 0 0. V ar (yt) x03C3 2 x2211 i 1 Q x03B8 i 2. en C OV (y t. yt x2212 s) vry van t vir alle tye wys 1. Eenheid wortel van die tydreeks x007B y t t 1. T x007D is 'n eenheid wortel proses as die verwagte waarde, variansie, of kovariansie groei met die tyd. Daarna het die tydreeks is nie stilstaan. Verwysings 1 Box, G. E. P. G. M. Jenkins, en G. C. Reinsel. Tydreeksanalise: Vooruitskatting en beheer. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994. 2 Enders, W. Toegepaste Ekonometriese tydreekse. Hoboken, New Jersey: John Wiley amp Sons, Inc. 1995 Kies 'n land


No comments:

Post a Comment